

Outline

- **1** Time series objects
- 2 Basic time series functionality
- **3** The forecast package
- Exponential smoothing
- ARIMA modelling

e series and forecasting in R

me series and forecasting in R

- More from the forecast package
- **7** Time series packages on CRAN

Australian GDP

eries and forecasting in R

ausgdp <	- ts(scan("gdp.dat"),frequency=4, start=1971+2/4)
 Class 	ts	
 Print 	and plotting	methods available.
> ausgdp		
Qtr	1 Qtr2 Qtr	3 Qtr4
1971	461	2 4651
1972 464	5 4615 464	5 4722
1973 478	0 4830 488	7 4933
1974 492	1 4875 486	7 4905
1975 493	8 4934 494	2 4979
1976 502	8 5079 511	2 5127
1977 513	0 5101 507	2 5069
1978 510	0 5166 524	4 5312
1979 534	9 5370 538	8 5396
1980 538	8 5403 544	2 5482

Australian beer production

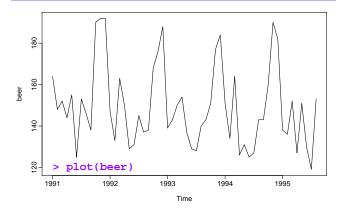
> beer

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1991	164	148	152	144	155	125	153	146	138	190	192	192
1992	147	133	163	150	129	131	145	137	138	168	176	188
1993	139	143	150	154	137	129	128	140	143	151	177	184
1994	151	134	164	126	131	125	127	143	143	160	190	182
1995	138	136	152	127	151	130	119	153				

Australian GDP 7500 > plot(ausgdp) 7000 6500 ausgdp 6000 5500 5000 1500 1975 1980 1985 1990 1995 Time

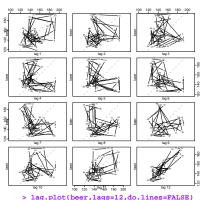
Time series obie

Australian beer production



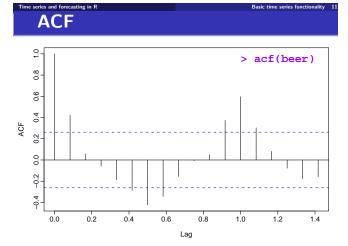
Lag plots

> lag.plot(beer,lags=12)



Lag plots

lag.plot(x, lags = 1, layout = NULL, set.lags = 1:lags, main = NULL, asp = 1, diag = TRUE, diag.col = "gray", type = "p", oma = NULL, ask = NULL, do.lines = (n <= 150), labels = do.lines, ...)



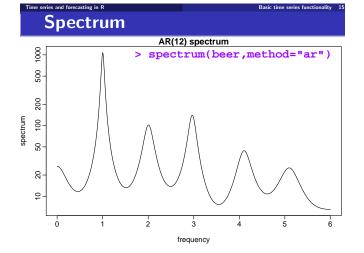
ACF/PACF

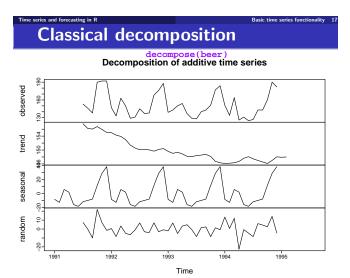
eries and foreca

- acf(x, lag.max = NULL,
- type = c("correlation", "covariance", "partial"), plot = TRUE, na.action = na.fail, demean = TRUE, ...)

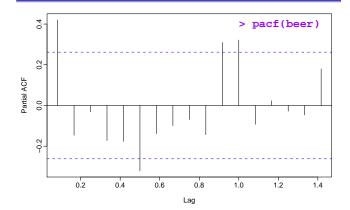
Basic time series functionality

- pacf(x, lag.max, plot, na.action, ...)
- ARMAacf(ar = numeric(0), ma = numeric(0), lag.max = r, pacf = FALSE)





me series and forecasting in PACE



ne series and forecasting in R Spectrum Raw periodogram 500.0 spectrum(beer) > 100.0 20.0 spectrum 5.0 2.0 0.5 0.2 ΰ 2 3 4 5 6 frequency

Basic time series functionality

Spectrum

ne series and forecasting in R

spectrum(x, ..., method = c("pgram", "ar"))

```
spec.pgram(x, spans = NULL, kernel, taper = 0.1,
    pad = 0, fast = TRUE, demean = FALSE,
    detrend = TRUE, plot = TRUE,
    na.action = na.fail, ...)
```

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action = na.fail, method = "yule-walker", ...)



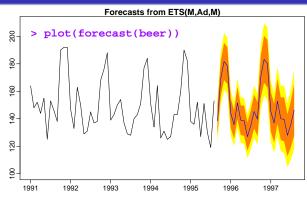
Decomposition

```
decompose(x, type = c("additive", "multiplicative"),
  filter = NULL)
stl(x, s.window, s.degree = 0,
   t.window = NULL, t.degree = 1,
   l.window = nextodd(period), l.degree = t.degree,
   s.jump = ceiling(s.window/10),
   t.jump = ceiling(t.window/10),
   l.jump = ceiling(l.window/10),
   robust = FALSE,
   inner = if(robust) 1 else 2,
   outer = if(robust) 15 else 0,
   na.action = na.fail)
```

The forecast package

forecast package

eries and forecasting in R



forecast package

series and forecasting in R

- Automatic exponential smoothing state space modelling.
- Automatic ARIMA modelling
- Forecasting intermittent demand data using Croston's method
- Forecasting using Theta method
- Forecasting methods for most time series modelling functions including arima(), ar(), StructTS(), ets(), and others.
- Part of the **forecasting** bundle along with **fma**, **expsmooth** and **Mcomp**.

Exponential smoothing

- Until recently, there has been no stochastic modelling framework incorporating likelihood calculation, prediction intervals, etc.
- Ord, Koehler & Snyder (JASA, 1997) and Hyndman, Koehler, Snyder and Grose (IJF, 2002) showed that all ES methods (including non-linear methods) are optimal forecasts from innovation state space models.
- Hyndman et al. (2008) provides a comprehensive and up-to-date survey of the area.
- The **forecast** package implements the framework of HKSO.

> foreca	ast(bee	r)				
	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Sep 1998	5	138.5042	128.2452	148.7632	122.8145	154.1940
Oct 1998	5	169.1987	156.6506	181.7468	150.0081	188.3894
Nov 1998	5	181.6725	168.1640	195.1810	161.0131	202.3320
Dec 1998	5	178.5394	165.2049	191.8738	158.1461	198.9327
Jan 1996	3	144.0816	133.2492	154.9140	127.5148	160.6483
Feb 1996	3	135.7967	125.4937	146.0996	120.0396	151.5537
Mar 1996	3	151.4813	139.8517	163.1110	133.6953	169.2673
Apr 1996	3	138.9345	128.1106	149.7584	122.3808	155.4882
May 1996	3	138.5279	127.5448	149.5110	121.7307	155.3250
Jun 1996	5	127.0269	116.7486	137.3052	111.3076	142.7462
Jul 1996	3	134.9452	123.7716	146.1187	117.8567	152.0337
Aug 1996	3	145.3088	132.9658	157.6518	126.4318	164.1858
Sep 1996	3	139.7348	127.4679	152.0018	120.9741	158.4955
Oct 1996	3	170.6709	155.2397	186.1020	147.0709	194.2708
Nov 1996	3	183.2204	166.1298	200.3110	157.0826	209.3582
Dec 1996	3	180.0290	162.6798	197.3783	153.4957	206.5624
Jan 1997	7	145.2589	130.7803	159.7374	123.1159	167.4019
Feb 1997	7	136.8833	122.7595	151.0071	115.2828	158.4838
Mar 1997	7	152.6684	136.3514	168.9854	127.7137	177.6231
Apr 1997	7	140.0008	124.4953	155.5064	116.2871	163.7145
May 1997	7	139.5691	123.5476	155.5906	115.0663	164.0719

The forecast package

forecast package

forecast package

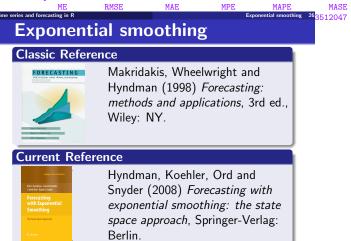
> summary(forecast(beer))

series and forecasting in R

Forecast method: ETS(M,Ad,M)

AIC AICc BIC 499.0295 515.1347 533.4604

In-sample error measures:



Exponential smoothing

		Seasonal Component			
	Trend	N	А	Μ	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	N,N	N,A	N,M	
А	(Additive)	A,N	A,A	A,M	
Ad	(Additive damped)	A _d ,N	A _d ,A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	
-				1.0	

General notation ETS(Error, Trend, Seasonal) ExponenTial Smoothing

A CONTRACT OF A	Simple exponential smoothing with ad- ditive errors		
ETS(A,A,N): Holt's	Holt's linear method with additive er-		
rors ETS(A,A,A): Addit	ive Holt-Winters' method with		

Innovations state space models

No trend or seasonality and multiplicative errors Example: ETS(M,N,N)

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$
$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$
$$= \ell_{t-1}(1 + \alpha \varepsilon_t)$$

 $0 \le \alpha \le 1$

ries and forecasting in R

 ε_t is white noise with mean zero.

All exponential smoothing models can be written using analogous state space equations.

Innovation state space models

Let $\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$ and $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$.

Example: Holt-Winters' multiplicative seasonal method Example: ETS(M,A,M)

me series and forecasting in R

 $Y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$ $\ell_t = \alpha(y_t / s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1 - \gamma)s_{t-m}$

where $0 \le \alpha \le 1$, $0 \le \beta \le \alpha$, $0 \le \gamma \le 1 - \alpha$ and m is the period of seasonality.

Exponential smoothing

```
fit <- ets(beer)</pre>
fit2 <- ets(beer,model="MNM",damped=FALSE)</pre>
fcast1 <- forecast(fit, h=24)</pre>
fcast2 <- forecast(fit2, h=24)</pre>
```

Exponential smoothing

ential smo

```
ets(y, model="ZZZ", damped=NULL, alpha=NULL, beta=NULL,
     gamma=NULL, phi=NULL, additive.only=FALSE,
    lower=c(rep(0.01,3), 0.8), upper=c(rep(0.99,3),0.98),
    opt.crit=c("lik","amse","mse","sigma"), nmse=3,
bounds=c("both","usual","admissible"),
    ic=c("aic","aicc","bic"), restrict=TRUE)
```

Exponential smoothing

```
> fit2
ETS(M,N,M)
```

me series and forecasting in R

Smoothing parameters: alpha = 0.247 gamma = 0.01

```
Initial states:
 1 = 168.1208
 s = 1.2417 1.2148 1.1388 0.9217 0.9667 0.8934
     0.8506 0.9182 0.9262 1.049 0.9047 0.9743
```

sigma: 0.0604

ATC AICc BIC 500.0439 510.2878 528.3988

499.0295 515.1347 533.4604

Exponential smoothing

ets() function

- Automatically chooses a model by default using the AIC
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class ets.

Exponential smoothing

ets objects

- Methods: coef(), plot(), summary(), residuals(), fitted(), simulate() and forecast()
- plot() function shows time plots of the original time series along with the extracted components (level, growth and seasonal).

Exponential smoothing

From Hyndman et al. (2008):

• Apply each of 30 methods that are appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).

Exponential smoothing

• Select best method using AIC:

$AIC = -2 \log(Likelihood) + 2p$

where p = # parameters.

- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition.

Exponential smoothing

> fit ETS(M,Ad,M)

me series and forecasting in R

Smoothing parameters: alpha = 0.0267 beta = 0.0232 gamma = 0.025 = 0.98 phi Initial states: 1 = 162.5752 b = -0.1598

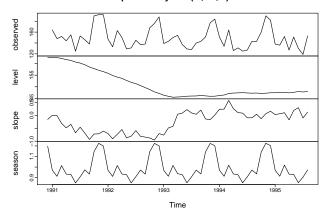
sigma: 0.0578

```
ATC
       ATCc
                 BIC
```

```
s = 1.1979 1.2246 1.1452 0.9354 0.9754 0.9068
   0.8523 0.9296 0.9342 1.016 0.9131 0.9696
```

Exponential smoothing

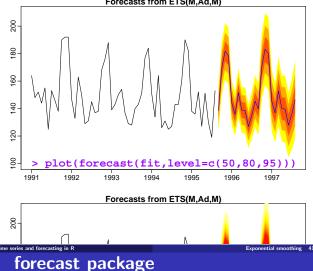
Decomposition by ETS(M,Ad,M) method



Forecast intervals

Forecasts from ETS(M,Ad,M)

ential smoo



forecast() function

- Takes either a time series as its main argument, or a time series model.
- Methods for objects of class ts, ets, arima, HoltWinters, StructTS, ar and others.
- If argument is ts, it uses ets model.
- Calls predict() when appropriate.
- Output as class forecast.

ARIMA modelling

- The arima() function in the **stats** package provides seasonal and non-seasonal ARIMA model estimation including covariates.
- However, it does not allow a constant unless the model is stationary
- It does not return everything required for forecast()
- It does not allow re-fitting a model to new data.
- So I prefer the Arima() function in the **forecast** package which acts as a wrapper to arima().
- Even better, the auto.arima() function in the forecast package.

Goodness-of-fit

> accura	acy(fit)				
ME	RMSE	MAE	MPE	MAPE	MASE
0.0774	8.4156	7.0331	-0.2915	4.7883	0.4351
> accura	acy(fit2)				
ME	RMSE	MAE	MPE	MAPE	MASE
-1.3884	9.0015	7.3303	-1.1945	5.0237	0.4535

Exponential smoothing

ets() function also allows refitting model to new data set.

Exponential smoothing

<pre>> usfit <- ets(usnetelec[1:45]) > test <_ ets(usnetelec[4:45])</pre>
<pre>> test <- ets(usnetelec[46:55], model = usfit)</pre>
> accuracy(test)
ME RMSE MAE MPE MAPE MASE
-4.3057 58.1668 43.5241 -0.1023 1.1758 0.5206
<pre>> accuracy(forecast(usfit,10), usnetelec[46:55])</pre>
ME RMSE MAE MPE MAPE MASE ACF1 Theil's U
46.36580 65.55163 49.83883 1.25087 1.35781 0.72895 0.08899 0.73725

forecast package

forecast class contains

- Original series
- Point forecasts
- Prediction intervals
- Forecasting method used
- Forecasting model information
- Residuals
- One-step forecasts for observed data

Methods applying to the forecast class:

print

me series and forecasting in R

- plot
- summary

ARIMA modelling

```
> fit <- auto.arima(beer)
> fit
Series: beer
ARIMA(0,0,0)(1,0,0)[12] with non-zero mean
```

Coefficients: sar1 intercept 0.8431 152.1132 s.e. 0.0590 5.1921

sigma^2 estimated as 122.1: log likelihood = -221.44 AIC = 448.88 AICc = 449.34 BIC = 454.95

How does auto.arima() work?

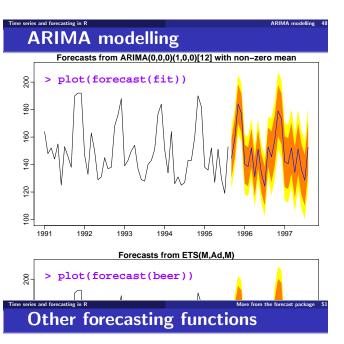
A seasonal ARIMA process

 $\Phi(B^m)\phi(B)(1-B^m)^D(1-B)^d y_t = c + \Theta(B^m)\theta(B)\varepsilon_t$

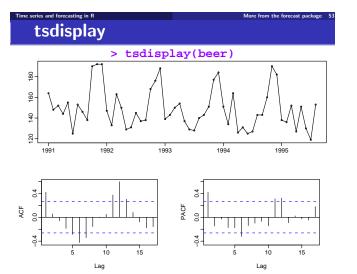
Need to select appropriate orders: p, q, P, Q, D, d

Use Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences *d* and *D* via unit root tests.
- Select *p*, *q*, *P*, *Q* by minimising AIC.
- Use stepwise search to traverse model space.



- **croston()** implements Croston's (1972) method for intermittent demand forecasting.
- theta() provides forecasts from the Theta method.
- splinef() gives cubic-spline forecasts, based on fitting a cubic spline to the historical data and extrapolating it linearly.
- meanf() returns forecasts based on the historical mean.
 - rwf() gives "naïve" forecasts equal to the most recent observation assuming a random walk model.



How does auto.arima() work?

AIC = $-2\log(L) + 2(p + q + P + Q + k)$ where L is the maximised likelihood fitted to the *differenced* data, k = 1 if $c \neq 0$ and k = 0 otherwise.

- Step 1: Select current model (with smallest AIC) from: ARIMA(2, d, 2)(1, D, 1)_m
 - $ARIMA(0, d, 0)(0, D, 0)_m$

if seasonal

ARIMA modelling

Step 2: Consider variations of current model:

 $ARIMA(1, d, 0)(1, D, 0)_m$

 $ARIMA(0, d, 1)(0, D, 1)_m$

- \bullet vary one of p,q,P,Q from current model by ± 1
- p, q both vary from current model by ± 1 .
- *P*, *Q* both vary from current model by ±1.
 Include/exclude *c* from current model
- Model with lowest AIC becomes current model.

Repeat Step 2 until no lower AIC can be found.

ARIMA vs ETS

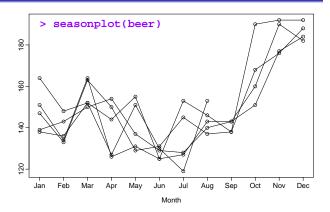
series and forecasting in R

- Myth that ARIMA models more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models which have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models—that is, non-seasonal models with either no trend or damped trend—have one unit root.

Other plotting functions

tsdisplay() provides a time plot along with an ACF and PACF. seasonplot() produces a seasonal plot.

seasonplot



Basic facilities

stats Contains substantial time series capabilities including the ts class for regularly spaced time series. Also ARIMA modelling, structural models, time series plots, acf and pacf graphs, classical decomposition and STL decomposition.

Forecasting and univariate modelling

forecast Lots of univariate time series methods including automatic ARIMA modelling, exponential smoothing via state space models, and the forecast class for consistent handling of time series forecasts. Part of the **forecasting** bundle.

- tseries GARCH models and unit root tests.
- FitAR Subset AR model fitting
- partsm Periodic autoregressive time series models pear Periodic autoregressive time series models

s packages on CRAN

Forecasting and univariate modelling

- Itsa Methods for linear time series analysis dlm Bayesian analysis of Dynamic Linear Models. timsac Time series analysis and control fArma ARMA Modelling fGarch ARCH/GARCH modelling BootPR Bias-corrected forecasting and bootstrap prediction intervals for autoregressive time series gsarima Generalized SARIMA time series simulation bayesGARCH Bayesian Estimation of the
 - GARCH(1,1) Model with t innovations

Decomposition and filtering

me series and forecasting in R

robfilter	Robust time series filters
mFilter	Miscellaneous time series filters useful for
	smoothing and extracting trend and
	cyclical components.
ArDec	Autoregressive decomposition
wmtsa	Wavelet methods for time series analysis
	based on Percival and Walden (2000)
wavelets	Computing wavelet filters, wavelet
	transforms and multiresolution analyses
signalexti	raction Real-time signal extraction
	(direct filter approach)

bspec Bayesian inference on the discrete power spectrum of time series

Nonlinear time series analysis

nlts	R functions for (non)linear time series analysis
tseriesChaos	Nonlinear time series analysis
RTisean	Algorithms for time series analysis
	from nonlinear dynamical systems
	theory.
tsDyn	Time series analysis based on
	dynamical systems theory
BAYSTAR	Bayesian analysis of threshold
	autoregressive models
fNonlinear	Nonlinear and Chaotic Time Series
	Modelling
bentcableAR	Bent-Cable autoregression

Resampling and simulation

boot	Bootstrapping, including the block
	bootstrap with several variants.
meboot	Maximum Entropy Bootstrap for Time Series

Unit roots and cointegration

tseries	Unit root tests and methods for computational finance.
urca	Unit root and cointegration tests
uroot	Unit root tests including methods for seasonal time series

Dynamic regression models

- dynlm Dynamic linear models and time series regression
 - dyn Time series regression
 - **tpr** Regression models with time-varying coefficients.

Multivariate time series models

- mAr Multivariate AutoRegressive analysis vars VAR and VEC models
- MSBVAR Markov-Switching Bayesian Vector Autoregression Models
 - tsfa Time series factor analysis
 - **dse** Dynamic system equations including multivariate ARMA and state space models.

Time series packages on CRAN

brainwaver Wavelet analysis of multivariate time series

cts Continuous time autoregressive models

sde Simulation and inference for stochastic

differential equations.

Functional data

far Modelling Functional AutoRegressive processes

Continuous time data

ies and forecasting in R

Irregular time series

zoo Infrastructure for both regularly and irregularly spaced time series.

Time series packages on CRAN

es packages on CRAN

- its Another implementation of irregular time series.
- fCalendar Chronological and Calendarical Objects
 - **fSeries** Financial Time Series Objects
 - xts Provides for uniform handling of R's different time-based data classes

Time series data

me series and forecasting in R

fma	Data from Makridakis, Wheelwright and
	Hyndman (1998) Forecasting: methods and
	applications. Part of the forecasting bundle.
expsmooth	Data from Hyndman, Koehler, Ord and Snyder
	(2008) Forecasting with exponential smoothing.
	Part of the forecasting bundle.
Mcomp	Data from the M-competition and
	M3-competition. Part of the forecasting bundle.
FinTS	R companion to Tsay (2005) Analysis of financial
	time series containing data sets, functions and
	script files required to work some of the examples.
TSA	R functions and datasets from Cryer and Chan
	(2008) Time series analysis with applications in R
TSdbi	Common interface to time series databases
fame	Interface for FAME time series databases
fEcofin	Ecofin - Economic and Financial Data Sets

Miscellaneous

ime series and forecasting in R

hydrosanity	Graphical user interface for exploring hydrological time series
pastecs	Regulation, decomposition and analysis of space-time series.
RSEIS	Seismic time series analysis tools
paleoTS	Modeling evolution in paleontological time-series
GeneTS	Microarray Time Series and Network Analysis
fractal	Fractal Time Series Modeling and Analysis