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Australian GDP
ausgdp <- ts(scan("gdp.dat"),frequency=4,

start=1971+2/4)

Class: ts

Print and plotting methods available.
> ausgdp

Qtr1 Qtr2 Qtr3 Qtr4

1971 4612 4651

1972 4645 4615 4645 4722

1973 4780 4830 4887 4933

1974 4921 4875 4867 4905

1975 4938 4934 4942 4979

1976 5028 5079 5112 5127

1977 5130 5101 5072 5069

1978 5100 5166 5244 5312

1979 5349 5370 5388 5396

1980 5388 5403 5442 5482
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Australian beer production

> beer

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1991 164 148 152 144 155 125 153 146 138 190 192 192

1992 147 133 163 150 129 131 145 137 138 168 176 188

1993 139 143 150 154 137 129 128 140 143 151 177 184

1994 151 134 164 126 131 125 127 143 143 160 190 182

1995 138 136 152 127 151 130 119 153
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Australian beer production
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Lag plots

lag 1

be
er

1

2
3

4

5

6

7

8

9

101112

13

14

15

16

17 18

19

20 21

22

23

24

25
26

27
28

29

30 31

32
33

34

35

36

37

38

39

40
41

42 43

44 45

46

47

48

49 50

51

52

53

54

5512
0

14
0

16
0

18
0

100 120 140 160 180 200

lag 2

be
er

1

2
3

4

5

6

7

8

9

101112

13

14

15

16

1718

19

20 21

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

44 45

46

47

48

4950

51

52

53

54

lag 3

be
er

1

2
3

4

5

6

7

8

9

1011 12

13

14

15

16

1718

19

20 21

22

23

24

25
26

27
28

29

30 31

32
33

34

35

36

37

38

39

40
41

42 43

4445

46

47

48

49 50

51

52

53

100 120 140 160 180 200

lag 4

be
er

1

2
3

4

5

6

7

8

9

10 1112

13

14

15

16

17 18

19

2021

22

23

24

25
26

27
28

29

30 31

32
33

34

35

36

37

38

39

40
41

42 43

4445

46

47

48

4950

51

52

lag 5

be
er

1

2
3

4

5

6

7

8

9

101112

13

14

15

16

17 18

19

2021

22

23

24

25
26

27
28

29

30 31

32
33

34

35

36

37

38

39

40
41

4243

4445

46

47

48

4950

51

lag 6

be
er

1

2
3

4

5

6

7

8

9

101112

13

14

15

16

17 18

19

20 21

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

44 45

46

47

48

49 50

12
0

14
0

16
0

18
0

lag 7

be
er

1

2
3

4

5

6

7

8

9

1011 12

13

14

15

16

1718

19

2021

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

4445

46

47

48

49

12
0

14
0

16
0

18
0

lag 8

be
er

1

2
3

4

5

6

7

8

9

10 1112

13

14

15

16

1718

19

2021

22

23

24

25
26

27
28

29

30 31

32
33

34

35

36

37

38

39

40
41

42 43

44 45

46

47

48

lag 9

be
er

1

2
3

4

5

6

7

8

9

101112

13

14

15

16

17 18

19

2021

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

4445

46

47

lag 10

be
er

1

2
3

4

5

6

7

8

9

1011 12

13

14

15

16

1718

19

2021

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

42 43

4445

46

lag 11

be
er

1

2
3

4

5

6

7

8

9

10 11 12

13

14

15

16

1718

19

20 21

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

44 45

100 120 140 160 180 200 lag 12

be
er

1

2
3

4

5

6

7

8

9

10 11 12

13

14

15

16

1718

19

2021

22

23

24

25
26

27
28

29

3031

32
33

34

35

36

37

38

39

40
41

4243

44

12
0

14
0

16
0

18
0

   
> lag.plot(beer,lags=12)
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> lag.plot(beer,lags=12,do.lines=FALSE)
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Lag plots

lag.plot(x, lags = 1, layout = NULL,

set.lags = 1:lags, main = NULL,

asp = 1, diag = TRUE,

diag.col = "gray", type = "p",

oma = NULL, ask = NULL,

do.lines = (n <= 150), labels = do.lines,

...)
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ACF
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PACF
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ACF/PACF

acf(x, lag.max = NULL,

type = c("correlation", "covariance", "partial"),

plot = TRUE, na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max, plot, na.action, ...)

ARMAacf(ar = numeric(0), ma = numeric(0), lag.max = r,

pacf = FALSE)
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Spectrum
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Spectrum
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> spectrum(beer,method="ar")
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Spectrum

spectrum(x, ..., method = c("pgram", "ar"))

spec.pgram(x, spans = NULL, kernel, taper = 0.1,

pad = 0, fast = TRUE, demean = FALSE,

detrend = TRUE, plot = TRUE,

na.action = na.fail, ...)

spec.ar(x, n.freq, order = NULL, plot = TRUE,

na.action = na.fail,

method = "yule-walker", ...)
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Classical decomposition
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STL decomposition
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Decomposition

decompose(x, type = c("additive", "multiplicative"),

filter = NULL)

stl(x, s.window, s.degree = 0,

t.window = NULL, t.degree = 1,

l.window = nextodd(period), l.degree = t.degree,

s.jump = ceiling(s.window/10),

t.jump = ceiling(t.window/10),

l.jump = ceiling(l.window/10),

robust = FALSE,

inner = if(robust) 1 else 2,

outer = if(robust) 15 else 0,

na.action = na.fail)
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forecast package
> forecast(beer)

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Sep 1995 138.5042 128.2452 148.7632 122.8145 154.1940
Oct 1995 169.1987 156.6506 181.7468 150.0081 188.3894
Nov 1995 181.6725 168.1640 195.1810 161.0131 202.3320
Dec 1995 178.5394 165.2049 191.8738 158.1461 198.9327
Jan 1996 144.0816 133.2492 154.9140 127.5148 160.6483
Feb 1996 135.7967 125.4937 146.0996 120.0396 151.5537
Mar 1996 151.4813 139.8517 163.1110 133.6953 169.2673
Apr 1996 138.9345 128.1106 149.7584 122.3808 155.4882
May 1996 138.5279 127.5448 149.5110 121.7307 155.3250
Jun 1996 127.0269 116.7486 137.3052 111.3076 142.7462
Jul 1996 134.9452 123.7716 146.1187 117.8567 152.0337
Aug 1996 145.3088 132.9658 157.6518 126.4318 164.1858
Sep 1996 139.7348 127.4679 152.0018 120.9741 158.4955
Oct 1996 170.6709 155.2397 186.1020 147.0709 194.2708
Nov 1996 183.2204 166.1298 200.3110 157.0826 209.3582
Dec 1996 180.0290 162.6798 197.3783 153.4957 206.5624
Jan 1997 145.2589 130.7803 159.7374 123.1159 167.4019
Feb 1997 136.8833 122.7595 151.0071 115.2828 158.4838
Mar 1997 152.6684 136.3514 168.9854 127.7137 177.6231
Apr 1997 140.0008 124.4953 155.5064 116.2871 163.7145
May 1997 139.5691 123.5476 155.5906 115.0663 164.0719
Jun 1997 127.9620 112.7364 143.1876 104.6764 151.2476
Jul 1997 135.9181 119.1567 152.6795 110.2837 161.5525
Aug 1997 146.3349 127.6354 165.0344 117.7365 174.9332
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forecast package
Forecasts from ETS(M,Ad,M)
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0 > plot(forecast(beer))
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forecast package
> summary(forecast(beer))

Forecast method: ETS(M,Ad,M)

Smoothing parameters:
alpha = 0.0267
beta = 0.0232
gamma = 0.025
phi = 0.98

Initial states:
l = 162.5752
b = -0.1598
s = 1.1979 1.2246 1.1452 0.9354 0.9754 0.9068

0.8523 0.9296 0.9342 1.0160 0.9131 0.9696

sigma: 0.0578

AIC AICc BIC
499.0295 515.1347 533.4604

In-sample error measures:
ME RMSE MAE MPE MAPE MASE

0.07741197 8.41555052 7.03312900 -0.29149125 4.78826138 0.43512047Time series and forecasting in R The forecast package 24

forecast package

Automatic exponential smoothing state space
modelling.

Automatic ARIMA modelling

Forecasting intermittent demand data using
Croston’s method

Forecasting using Theta method

Forecasting methods for most time series
modelling functions including arima(), ar(),
StructTS(), ets(), and others.

Part of the forecasting bundle along with
fma, expsmooth and Mcomp.
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Exponential smoothing
Classic Reference

Makridakis, Wheelwright and
Hyndman (1998) Forecasting:
methods and applications, 3rd ed.,
Wiley: NY.

Current Reference

1 3

Springer Series in Statistics Springer Series in Statistics 

Rob J. Hyndman · Anne B. Koehler 
J. Keith Ord · Ralph D. Snyder

Forecasting  
with Exponential  
Smoothing 

The State Space Approach

Forecasting w
ith Exponential Sm

oothing
Hyndm

an · Koehler · Ord · Snyder 

1

ISBN 9-783-540-71916-8

Exponential smoothing methods have been around since the 1950s, and are the most popular
forecasting methods used in business and industry. Recently, exponential smoothing has been
revolutionized with the introduction of a complete modeling framework incorporating  
inno-vations state space models, likelihood calculation, prediction intervals and procedures for 
model selection. In this book, all of the important results for this framework are brought together  
in a coherent manner with consistent notation. In addition, many new results and extensions are 
introduced and several application areas are examined in detail.

Rob J. Hyndman is a Professor of Statistics and Director of the Business and Economic Forecasting
Unit at Monash University, Australia. He is Editor-in-Chief of the International Journal  
of Forecasting, author of over 100 research papers in statistical science, and received the 2007 
Moran medal from the Australian Academy of Science for his contributions to statistical research.

Anne B. Koehler is a Professor of Decision Sciences and the Panuska Professor of Business
Administration at Miami University, Ohio. She has numerous publications, many of which are  
on forecasting models for seasonal time series and exponential smoothing methods.

J. Keith Ord is a Professor in the McDonough School of Business, Georgetown University, 
Washington DC. He has authored over 100 research papers in statistics and forecasting, and is  
a co-author of Kendall's Advanced Theory of Statistics.

Ralph D. Snyder is an Associate Professor in the Department of Econometrics and Business  
Statistics at Monash University, Australia. He has extensive publications on business forecasting 
and inventory management. He has played a leading role in the establishment of the class of  
innovations state space models for exponential smoothing.

Rob J. Hyndman · Anne B. Koehler · J. Keith Ord · Ralph D. Snyder 
Forecasting with Exponential Smoothing

Hyndman, Koehler, Ord and
Snyder (2008) Forecasting with
exponential smoothing: the state
space approach, Springer-Verlag:
Berlin.
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Exponential smoothing

Until recently, there has been no stochastic
modelling framework incorporating likelihood
calculation, prediction intervals, etc.
Ord, Koehler & Snyder (JASA, 1997) and
Hyndman, Koehler, Snyder and Grose (IJF,
2002) showed that all ES methods (including
non-linear methods) are optimal forecasts from
innovation state space models.
Hyndman et al. (2008) provides a
comprehensive and up-to-date survey of the
area.
The forecast package implements the
framework of HKSO.
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Exponential smoothing

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) A,N A,A A,M

Ad (Additive damped) Ad,N Ad,A Ad,M

M (Multiplicative) M,N M,A M,M

Md (Multiplicative damped) Md,N Md,A Md,M

General notation ETS(Error,Trend,Seasonal)
ExponenTial Smoothing

ETS(A,N,N): Simple exponential smoothing with ad-
ditive errors

ETS(A,A,N): Holt’s linear method with additive er-
rors

ETS(A,A,A): Additive Holt-Winters’ method with
additive errors

ETS(M,A,M): Multiplicative Holt-Winters’ method
with multiplicative errors

ETS(A,Ad,N): Damped trend method with additive er-
rors

There are 30 separate models in the ETS
framework
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Innovations state space models

No trend or seasonality
and multiplicative errors

Example: ETS(M,N,N)

yt = `t−1(1 + εt)

`t = αyt + (1− α)`t−1

= `t−1(1 + αεt)

0 ≤ α ≤ 1
εt is white noise with mean zero.

All exponential smoothing models can be
written using analogous state space equations.
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Innovation state space models

Let xt = (`t , bt , st , st−1, . . . , st−m+1) and εt
iid∼ N(0, σ2).

Example: Holt-Winters’ multiplicative
seasonal method
Example: ETS(M,A,M)

Yt = (`t−1 + bt−1)st−m(1 + εt)

`t = α(yt/st−m) + (1− α)(`t−1 + bt−1)

bt = β(`t − `t−1) + (1− β)bt−1

st = γ(yt/(`t−1 + bt−1)) + (1− γ)st−m

where 0 ≤ α ≤ 1, 0 ≤ β ≤ α, 0 ≤ γ ≤ 1− α
and m is the period of seasonality.
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Exponential smoothing

From Hyndman et al. (2008):

Apply each of 30 methods that are appropriate
to the data. Optimize parameters and initial
values using MLE (or some other criterion).

Select best method using AIC:

AIC = −2 log(Likelihood) + 2p

where p = # parameters.

Produce forecasts using best method.

Obtain prediction intervals using underlying
state space model.

Method performed very well in M3 competition.
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Exponential smoothing

fit <- ets(beer)

fit2 <- ets(beer,model="MNM",damped=FALSE)

fcast1 <- forecast(fit, h=24)

fcast2 <- forecast(fit2, h=24)

ets(y, model="ZZZ", damped=NULL, alpha=NULL, beta=NULL,

gamma=NULL, phi=NULL, additive.only=FALSE,

lower=c(rep(0.01,3), 0.8), upper=c(rep(0.99,3),0.98),

opt.crit=c("lik","amse","mse","sigma"), nmse=3,

bounds=c("both","usual","admissible"),

ic=c("aic","aicc","bic"), restrict=TRUE)
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Exponential smoothing
> fit
ETS(M,Ad,M)

Smoothing parameters:
alpha = 0.0267
beta = 0.0232
gamma = 0.025
phi = 0.98

Initial states:
l = 162.5752
b = -0.1598
s = 1.1979 1.2246 1.1452 0.9354 0.9754 0.9068

0.8523 0.9296 0.9342 1.016 0.9131 0.9696

sigma: 0.0578

AIC AICc BIC
499.0295 515.1347 533.4604
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Exponential smoothing

> fit2
ETS(M,N,M)

Smoothing parameters:
alpha = 0.247
gamma = 0.01

Initial states:
l = 168.1208
s = 1.2417 1.2148 1.1388 0.9217 0.9667 0.8934

0.8506 0.9182 0.9262 1.049 0.9047 0.9743

sigma: 0.0604

AIC AICc BIC
500.0439 510.2878 528.3988
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Exponential smoothing

ets() function

Automatically chooses a model by default using
the AIC

Can handle any combination of trend,
seasonality and damping

Produces prediction intervals for every model

Ensures the parameters are admissible
(equivalent to invertible)

Produces an object of class ets.
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Exponential smoothing

ets objects

Methods: coef(), plot(),

summary(), residuals(), fitted(),

simulate() and forecast()

plot() function shows time plots of the

original time series along with the

extracted components (level, growth and

seasonal).
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Exponential smoothing
12

0
16

0

ob
se

rv
ed

14
5

15
5

le
ve

l

−
1.

0
0.

0
0.

5

sl
op

e

0.
9

1.
1

1991 1992 1993 1994 1995

se
as

on

Time

Decomposition by ETS(M,Ad,M) method
plot(fit)
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Goodness-of-fit

> accuracy(fit)

ME RMSE MAE MPE MAPE MASE

0.0774 8.4156 7.0331 -0.2915 4.7883 0.4351

> accuracy(fit2)

ME RMSE MAE MPE MAPE MASE

-1.3884 9.0015 7.3303 -1.1945 5.0237 0.4535
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Forecast intervals
Forecasts from ETS(M,Ad,M)
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> plot(forecast(fit,level=c(50,80,95)))

Forecasts from ETS(M,Ad,M)
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> plot(forecast(fit,fan=TRUE))
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Exponential smoothing

ets() function also allows refitting model to new
data set.

> usfit <- ets(usnetelec[1:45])
> test <- ets(usnetelec[46:55], model = usfit)

> accuracy(test)
ME RMSE MAE MPE MAPE MASE

-4.3057 58.1668 43.5241 -0.1023 1.1758 0.5206

> accuracy(forecast(usfit,10), usnetelec[46:55])
ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U

46.36580 65.55163 49.83883 1.25087 1.35781 0.72895 0.08899 0.73725

Time series and forecasting in R Exponential smoothing 41

forecast package

forecast() function

Takes either a time series as its main

argument, or a time series model.

Methods for objects of class ts, ets,

arima, HoltWinters, StructTS, ar

and others.

If argument is ts, it uses ets model.

Calls predict() when appropriate.

Output as class forecast.
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forecast package

forecast class contains
Original series
Point forecasts
Prediction intervals
Forecasting method used
Forecasting model information
Residuals
One-step forecasts for observed data

Methods applying to the forecast class:

print

plot

summary
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ARIMA modelling

The arima() function in the stats package
provides seasonal and non-seasonal ARIMA
model estimation including covariates.
However, it does not allow a constant unless
the model is stationary
It does not return everything required for
forecast()

It does not allow re-fitting a model to new data.
So I prefer the Arima() function in the
forecast package which acts as a wrapper to
arima().
Even better, the auto.arima() function in the
forecast package.
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ARIMA modelling

> fit <- auto.arima(beer)

> fit

Series: beer

ARIMA(0,0,0)(1,0,0)[12] with non-zero mean

Coefficients:

sar1 intercept

0.8431 152.1132

s.e. 0.0590 5.1921

sigma^2 estimated as 122.1: log likelihood = -221.44

AIC = 448.88 AICc = 449.34 BIC = 454.95



Time series and forecasting in R ARIMA modelling 46

How does auto.arima() work?

A seasonal ARIMA process

Φ(Bm)φ(B)(1− Bm)D(1− B)dyt = c + Θ(Bm)θ(B)εt

Need to select appropriate orders: p, q,P ,Q,D, d

Use Hyndman and Khandakar (JSS, 2008)
algorithm:

Select no. differences d and D via unit root
tests.
Select p, q,P ,Q by minimising AIC.
Use stepwise search to traverse model space.
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How does auto.arima() work?

AIC = −2 log(L) + 2(p + q + P + Q + k)
where L is the maximised likelihood fitted to the differenced data,
k = 1 if c 6= 0 and k = 0 otherwise.

Step 1: Select current model (with smallest AIC) from:
ARIMA(2, d , 2)(1,D, 1)m

ARIMA(0, d , 0)(0,D, 0)m

ARIMA(1, d , 0)(1,D, 0)m if seasonal
ARIMA(0, d , 1)(0,D, 1)m

Step 2: Consider variations of current model:
• vary one of p, q,P ,Q from current model by ±1
• p, q both vary from current model by ±1.
• P ,Q both vary from current model by ±1.
• Include/exclude c from current model

Model with lowest AIC becomes current model.
Repeat Step 2 until no lower AIC can be found.
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ARIMA modelling
Forecasts from ARIMA(0,0,0)(1,0,0)[12] with non−zero mean
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Forecasts from ETS(M,Ad,M)
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0 > plot(forecast(beer))
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ARIMA vs ETS

Myth that ARIMA models more general than
exponential smoothing.
Linear exponential smoothing models all special
cases of ARIMA models.
Non-linear exponential smoothing models have
no equivalent ARIMA counterparts.
Many ARIMA models which have no
exponential smoothing counterparts.
ETS models all non-stationary. Models with
seasonality or non-damped trend (or both)
have two unit roots; all other models—that is,
non-seasonal models with either no trend or
damped trend—have one unit root.
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Other forecasting functions

croston() implements Croston’s (1972) method for
intermittent demand forecasting.

theta() provides forecasts from the Theta
method.

splinef() gives cubic-spline forecasts, based on
fitting a cubic spline to the historical
data and extrapolating it linearly.

meanf() returns forecasts based on the historical
mean.

rwf() gives “näıve” forecasts equal to the most
recent observation assuming a random
walk model.
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Other plotting functions

tsdisplay() provides a time plot along with an ACF
and PACF.

seasonplot() produces a seasonal plot.
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tsdisplay
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> tsdisplay(beer)
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seasonplot

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

12
0

14
0

16
0

18
0

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

> seasonplot(beer)



Time series and forecasting in R Time series packages on CRAN 56

Basic facilities

stats Contains substantial time series
capabilities including the ts class for
regularly spaced time series. Also ARIMA
modelling, structural models, time series
plots, acf and pacf graphs, classical
decomposition and STL decomposition.
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Forecasting and univariate
modelling

forecast Lots of univariate time series methods
including automatic ARIMA modelling,
exponential smoothing via state space
models, and the forecast class for
consistent handling of time series
forecasts. Part of the forecasting
bundle.

tseries GARCH models and unit root tests.

FitAR Subset AR model fitting

partsm Periodic autoregressive time series models

pear Periodic autoregressive time series models
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Forecasting and univariate
modelling

ltsa Methods for linear time series analysis
dlm Bayesian analysis of Dynamic Linear Models.

timsac Time series analysis and control
fArma ARMA Modelling
fGarch ARCH/GARCH modelling

BootPR Bias-corrected forecasting and bootstrap
prediction intervals for autoregressive
time series

gsarima Generalized SARIMA time series simulation
bayesGARCH Bayesian Estimation of the

GARCH(1,1) Model with t innovations
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Resampling and simulation

boot Bootstrapping, including the block
bootstrap with several variants.

meboot Maximum Entropy Bootstrap for Time
Series
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Decomposition and filtering

robfilter Robust time series filters
mFilter Miscellaneous time series filters useful for

smoothing and extracting trend and
cyclical components.

ArDec Autoregressive decomposition
wmtsa Wavelet methods for time series analysis

based on Percival and Walden (2000)
wavelets Computing wavelet filters, wavelet

transforms and multiresolution analyses
signalextraction Real-time signal extraction

(direct filter approach)
bspec Bayesian inference on the discrete power

spectrum of time series
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Unit roots and cointegration

tseries Unit root tests and methods for
computational finance.

urca Unit root and cointegration tests

uroot Unit root tests including methods for
seasonal time series
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Nonlinear time series analysis

nlts R functions for (non)linear time
series analysis

tseriesChaos Nonlinear time series analysis
RTisean Algorithms for time series analysis

from nonlinear dynamical systems
theory.

tsDyn Time series analysis based on
dynamical systems theory

BAYSTAR Bayesian analysis of threshold
autoregressive models

fNonlinear Nonlinear and Chaotic Time Series
Modelling

bentcableAR Bent-Cable autoregression
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Dynamic regression models

dynlm Dynamic linear models and time series
regression

dyn Time series regression

tpr Regression models with time-varying
coefficients.
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Multivariate time series models

mAr Multivariate AutoRegressive analysis

vars VAR and VEC models

MSBVAR Markov-Switching Bayesian Vector
Autoregression Models

tsfa Time series factor analysis

dse Dynamic system equations including
multivariate ARMA and state space
models.

brainwaver Wavelet analysis of multivariate
time series
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Functional data

far Modelling Functional AutoRegressive
processes
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Continuous time data

cts Continuous time autoregressive models

sde Simulation and inference for stochastic
differential equations.
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Irregular time series

zoo Infrastructure for both regularly and
irregularly spaced time series.

its Another implementation of irregular
time series.

fCalendar Chronological and Calendarical
Objects

fSeries Financial Time Series Objects

xts Provides for uniform handling of R’s
different time-based data classes
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Time series data

fma Data from Makridakis, Wheelwright and
Hyndman (1998) Forecasting: methods and
applications. Part of the forecasting bundle.

expsmooth Data from Hyndman, Koehler, Ord and Snyder
(2008) Forecasting with exponential smoothing.
Part of the forecasting bundle.

Mcomp Data from the M-competition and
M3-competition. Part of the forecasting bundle.

FinTS R companion to Tsay (2005) Analysis of financial
time series containing data sets, functions and
script files required to work some of the examples.

TSA R functions and datasets from Cryer and Chan
(2008) Time series analysis with applications in R

TSdbi Common interface to time series databases
fame Interface for FAME time series databases

fEcofin Ecofin - Economic and Financial Data Sets
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Miscellaneous

hydrosanity Graphical user interface for exploring
hydrological time series

pastecs Regulation, decomposition and
analysis of space-time series.

RSEIS Seismic time series analysis tools

paleoTS Modeling evolution in
paleontological time-series

GeneTS Microarray Time Series and Network
Analysis

fractal Fractal Time Series Modeling and
Analysis
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